

Welcome to BAG’s documentation!

Contents:

	Tutorial

	Overview
	Schematic Generator

	Design Module

	Testbench Generator

	BAG Setup Procedure
	Installing Python for BAG

	Building Pyoptsparse

	Configuration Files Summary

	BAG Configuration File

	Technology Configuration File

	Setting up New PDK

	Developer Guide

	bag
	bag package

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

This section contains several simple tutorials for you to get an idea of the BAG workflow.

In these tutorials, we will be using git extensively. git allows you to copy a working setup,
and it also allows you to checkout and use other people’s design while they can work on adding future
improvements. To learn git, you can read the documentations here [https://git-scm.com/doc], or alternatively you can just
google git commands to learn more about it while working through the tutorial.

Overview

[image: ../_images/bag_flow.png]
BAG design flow diagram

BAG is a Python-based circuit design platform that aims to automate analog circuit design, but at the same time give the
user full visibility and control over every step in the design flow.

The analog circuit design flow is generally as follows:

	Create a schematic generator of the circuit.

	Create a testbench generator to measure specifications and verify functionality.

	Create a layout generator if post-extraction verification is needed.

	Generate a schematic with given specifications.

	Generate a testbench that instantiates the generated schematic.

	Simulate the testbenches and post-process data to verify that the circuit meets specifications.

	Create the layout of your schematic and verify it’s LVS/DRC clean.

	Repeat step 3 on post-extraction schematic.

BAG 2.0 is designed so that any or all steps of the design flow can be performed in a Python script or console, thus
enabling rapid design iteration and architecture exploration.

To achieve its goal, BAG is divided into 4 components: schematic generators, layout generators, design modules, and
testbench generators. These components are independent from one another, so the designer can pick and choose which steps
in the design flow to automate. For example, the designer can simply use BAG to generate new schematics, and use his
own CAD program for simulation and verification. Alternatively, The designer can provide an existing schematic to BAG
and simply use it to automate the verification process.

BAG interacts with an external CAD program or simulator to complete all the design and simulation tasks. BAG comes with
Virtuoso and Ocean simulator support, but can be extended to other CAD programs or simulators. The rest of this
document assumes you are using Virtuoso and running simulations in Ocean.

Next we will describe each components of BAG in detail.

	Schematic Generator

	Design Module
	design()

	get_layout_params()

	get_layout_pin_mapping()

	Testbench Generator

Schematic Generator

A schematic generator is a schematic in your CAD program that tells BAG all the information needed to create a design.
BAG creates design modules from schematic generators, and BAG will copy and modify schematic generators to implement
new designs.

[image: ../_images/gm_schematic.png]
An example schematic generator of a differential gm cell.

A schematic generator needs to follow some rules to work with BAG:

	Instances in a schematic generator must be other schematic generators, or a cell in the BAG_prim library.

	BAG can array any instance in a schematic generator. That is, in the design implementation phase, BAG can
copy/paste this instance any number of times, and modify the connections or parameters of any copy. This is useful
in creating array structures, such as an inverter chain with variable number of stages, or a DAC with variable
number of bits.

However, if you need to array an instance, its ports must be connected to wire stubs, with net labels on each of the
wire stubs. Also, there must be absolutely nothing to the right of the instance, since BAG will array the instance
by copying-and-pasting to the right. An example of an inverter buffer chain schematic generator is shown below.

[image: ../_images/inv_chain_schematic.png]
An example schematic generator of an inverter buffer chain. Ports connected by wire stubs, nothing on the right.

	BAG can replace the instance master of any instance. The primary use of this is to allow the designer to change
transistor threshold values, but this could be used for other schematic generators if implemented. Whenever you
switch the instance master of an instance, the symbol of the new instance must exactly match the old instance,
including the port names.

	Although not required, it is good practice to fill in default parameter values for all instances from the
BAG_prim library. This makes it so that you can simulate a schematic generator in a normal testbench, and make
debugging easier.

Design Module

A design module is a Python class that generates new schematics. It computes all parameters needed to generate a
schematic from user defined specifications. For example, a design module for an inverter needs to compute the width,
length, and threshold flavor of the NMOS and PMOS to generate a new inverter schematic. The designer of this module can
let the user specify these parameters directly, or alternatively compute them from higher level specifications, such as
fanout, input capacitance, and leakage specs.

To create a default design module for a schematic generator, create a BagProject instance and call
import_design_library() to import all schematic generators in a library from your CAD
program into Python. The designer should then implement the three methods, design(),
get_layout_params(), and get_layout_pin_mapping() (The latter two are
optional if you do not use BAG to generate layout). Once you finish the design module definition, you can create new
design module instances by calling create_design_module().

The following sections describe how each of these methods should be implemented.

design()

This method computes all parameters needed to generate a schematic from user defined specifications. The input
arguments should also be specified in this method.

A design module can have multiple design methods, as long as they have difference names. For example, You can implement
the design() method to compute parameters from high level specifications, and define a new method named
design_override() that allows the user to assign parameter values directly for debugging purposes.

To enable hierarchical design, design module has a dictionary, instances, that
maps children instance names to corresponding design modules, so you can simply call their
design() methods to set their parameters. See Tutorial for an simple example.

If you need to modify the schematic structure (such as adding more inverter buffers), you should call the corresponding
methods before calling design() methods of child instances, as those design module could be
changed. The rest of this section explains how you modify the schematic.

Pin Renaming

Most of the time, you should not rename the pin of schematic. The only time you should rename the pin is when you have
a variable bus pin where the number of bits in the bus can change with the design. In this case, call
rename_pin() to change the number of bits in the bus. To connect/remove instances from
the added/deleted bus pins, see Instance Connection Modification

Delete Instances

Delete a child instance by calling delete_instance(). After
this call, the corresponding value in instances dictionary will become None.

Note

You don’t have to delete 0-width or 0-finger transistors; BAG already handles that for you.

Replace Instance Master

If you have two different designs of a child instance, and you want to swap between the two designs, you can call
replace_instance_master() to change the instance master of a child.

Note

You can replace instance masters only if the two instance masters have exactly the symbol, including pin names.

Instance Connection Modification

Call reconnect_instance_terminal() to change a child instance’s connection.

Arraying Child Instances

Call array_instance() to array a child instance. After this call,
instances will map the child instance name to a list of design modules, one for each instance
in the array. You can then iterate through this list and design each of the instances. They do not need to have the
same parameter values.

Restoring to Default

If you are using the design module in a design iteration loop, or you’re using BAG interactively through the Python
console, and you want to restore a deleted/replaced/arrayed child instance to the default state, you can call
restore_instance().

get_layout_params()

This method should return a dictionary from layout parameter names to their values. This dictionary is used to create
a layout cell that will pass LVS against the generated schematic.

get_layout_pin_mapping()

This method should return a dictionary from layout pin names to schematic pin names. This method exists because a
layout cell may not have the same pin names as the schematic. If a layout pin should be left un-exported, its
corresponding value in the dictionary must be None.

This dictionary only need to list the layout pins that needs to be renamed. If no renaming is necessary, an empty
dictionary can be returned.

Testbench Generator

A testbench generator is just a normal testbench with schematic and adexl view. BAG will simply copy the schematic and
adexl view, and replace the device under test with the new generated schematic. There are only 3 restrictions to the
testbench:

	All device-under-test’s (DUTs) in the testbench must have an instance name starting with XDUT. This is to inform BAG
which child instances should be replaced.

	The testbench must be configured to simulate with ADE-XL. This is to make parametric/corner sweeps and monte carlo
easier.

	You should not define any process corners in the ADE-XL state, as BAG will load them for you. This makes it
possible to use the same testbench generator across different technologies.

To verify a new design, call create_testbench() and specify the testbench generator library/cell,
DUT library/cell, and the library to create the new testbench in. BAG will create a Testbench object
to represent this testbench. You can then call its methods to set the parameters, process corners, or enable parametric
sweeps. When you’re done, call update_testbench() to commit the changes to Virtuoso. If you
do not wish to run simulation in BAG, you can then open this testbench in Virtuoso and simulate it there.

If you want to start simulation from BAG and load simulation data, you need to call
add_output() method to specify which outputs to record and send back to Python. Output
expression is a Virtuoso calculator expression. Then, call run_simulation() to start a
simulation run. During the simulation, you can press Ctrl-C anytime to abort simulation. When the simulation
finish, the result directory will be saved to the attribute save_dir, and you can call
bag.data.load_sim_results() to load the result in Python. See Tutorial for an example.

Since BAG uses the ADE-XL interface to run simulation, all simulation runs will be recorded in ADE-XL’s history tab, so
you can plot them in Virtuoso later for debugging purposes. By default, all simulation runs from BAG has the BagSim
history tag, but you can also specify your own tag name when you call run_simulation(). Read
ADE-XL documentation if you want to know more about ADE-XL’s history feature.

BAG Setup Procedure

This document describes how to install Python for BAG and the various configuration settings. Since a lot of the
configuration depends on the external CAD program and simulator, this document assumes you are using Virtuoso and
Ocean (with ADEXL) for schematic design and simulation, respectively.

	Installing Python for BAG
	Installation Requirements

	Required Packages

	Building Pyoptsparse

	Configuration Files Summary
	Starting New Project

	Customizing Virtuoso Setups

	Python Design Module Customization

	Changing Process Technology

	BAG Configuration File
	socket

	database

	simulation

	class

	lib_defs

	new_lib_path

	Technology Configuration File
	class

	mos

	layout

	Setting up New PDK

Installing Python for BAG

This section describes how to install Python for running BAG.

Installation Requirements

BAG is compatible with Python 3.5+ (Python 2.7+ is theoretically supported but untested), so you will need to have
Python 3.5+ installed. For Linux/Unix systems, it is recommended to install a separate Python distribution from
the system Python.

BAG requires multiple Python packages, some of which requires compiling C++/C/Fortran extensions. Therefore, it is
strongly recommended to download Anaconda Python [https://www.continuum.io/downloads], which provides a Python
distribution with most of the packages preinstalled. Otherwise, please refer to documentation for each required
package for how to install/build from source.

Required Packages

In addition to the default packages that come with Anaconda (numpy, scipy, etc.), you’ll need the following additional
packages:

	python-future [https://pypi.python.org/pypi/future]

This package provides Python 2/3 compatibility. It is installable from pip:

> pip install future

pip also works for pre-downloaded tar file:

> pip install future-0.16.0.tar.gz

	subprocess32 [https://pypi.python.org/pypi/subprocess32] (Python 2 only)

This package is a backport of Python 3.2’s subprocess module to Python 2. It is installable from pip.

	sqlitedict [https://pypi.python.org/pypi/sqlitedict]

This is a dependency of OpenMDAO. It is installable from pip.

	OpenMDAO [https://pypi.python.org/pypi/openmdao]

This is a flexible optimization framework in Python developed by NASA. It is installable from pip.

	mpich2 [https://anaconda.org/anaconda/mpich2] (optional)

This is the Message Passing Interface (MPI) library. OpenMDAO and Pyoptsparse can optionally use this library
for parallel computing. You can install this package with:

> conda install mpich2

	mpi4py [https://anaconda.org/anaconda/mpi4py] (optional)

This is the Python wrapper of mpich2. You can install this package with:

> conda install mpi4py

	ipopt [https://anaconda.org/pkerichang/ipopt] (optional)

Ipopt [https://projects.coin-or.org/Ipopt] is a free software package for large-scale nonlinear optimization.
This can be used to replace the default optimization solver that comes with scipy. You can install this package with:

> conda install --channel pkerichang ipopt

	pyoptsparse [https://anaconda.org/pkerichang/pyoptsparse] (optional)

pyoptsparse is a python package that contains a collection of optmization solvers, including a Python wrapper
around Ipopt. You can install this package with:

> conda install --channel pkerichang pyoptsparse

Building Pyoptsparse

To be written.

Configuration Files Summary

Although BAG has many configuration settings, most of them do not need to be changed. This file summarizes which
settings you should modify under various use cases.

Starting New Project

For every new project, it is a good practice to keep a set of global configuration files to make sure everyone working
on the project is simulating the same corners, running LVS and extraction with the same settings, and so on. In this
case, you should change the following fields to point to the global configuration files:

	database.testbench.env_file

	database.checker.lvs_runset

	database.checker.rcx_runset

	database.calibreview.cell_map

Customizing Virtuoso Setups

If you changed your Virtuoso setup (configuration files, working directory, etc.), double check the following fields to
see if they need to be modified:

	database.checker.lvs_run_dir

	database.checker.rcx_run_dir

	simulation.init_file

Python Design Module Customization

The following fields control how BAG 2.0 finds design modules, and also where it puts new imported modules:

	lib_defs

	new_lib_path

Changing Process Technology

If you want to change the process technology, double check the following fields:

	database.schematic.tech_lib

	database.schematic.exclude_libraries

	database.testbench.config_libs

	class

The following fields probably won’t change, but if something doesn’t work it’s worth to double check:

	database.schematic.sympin

	database.schematic.ipin

	database.schematic.opin

	database.schematic.iopin

	database.schematic.simulators

BAG Configuration File

BAG configuration file is written in YAML format. This document describes each setting.
BAG configuration file may use environment variable to specify values of any entries.

	socket
	socket.host

	socket.port_file

	socket.sim_port_file

	socket.log_file

	socket.pipeline

	database
	data.class

	database.schematic
	database.schematic.tech_lib

	database.schematic.sympin

	database.schematic.ipin

	database.schematic.opin

	database.schematic.iopin

	database.schematic.simulators

	database.schematic.exclude_libraries

	database.testbench
	database.testbench.config_libs

	database.testbench.config_views

	database.testbench.config_stops

	database.testbench.env_file

	database.testbench.def_files

	database.testbench.default_env

	database.checker
	database.checker.checker_cls

	database.checker.lvs_run_dir

	database.checker.rcx_run_dir

	database.checker.lvs_runset

	database.checker.rcx_runset

	database.checker.source_added_file

	database.checker.rcx_mode

	database.checker.xact_rules

	database.calibreview
	database.calibreview.cell_map

	database.calibreview.view_name

	simulation
	simulation.class

	simulation.prompt

	simulation.init_file

	simulation.view

	simulation.state

	simulation.update_timeout_ms

	simulation.kwargs

	job_options

	class

	lib_defs

	new_lib_path

socket

This entry defines socket settings for BAG to communicate with Virtuoso.

socket.host

The host of the BAG server socket, i.e. the machine running the Virtuoso program. usually localhost.

socket.port_file

File containing socket port number for BAG server. When Virtuoso starts the BAG server process, it finds a open port and bind the
server to this port. It then creates a file with name in $BAG_WORK_DIR directory, and write the port number to this
file.

socket.sim_port_file

File containing socket port number for simulation server. When the simulation server starts, it finds a open port and bind the
server to this port. It then creates a file with name in $BAG_WORK_DIR directory, and write the port number to this
file.

socket.log_file

Socket communication debugging log file. All messages sent or received by BAG will be recorded in this log.

socket.pipeline

number of messages allowed in the ZMQ pipeline. Usually you don’t have to change this.

database

This entry defines all settings related to Virtuoso.

data.class

The Python class that handles database interaction. This entry is mainly to support non-Virtuoso CAD programs. If you
use Virtuoso, the value must be bag.interface.skill.SkillInterface.

database.schematic

This entry contains all settings needed to read/generate schematics.

database.schematic.tech_lib

Technology library. When BAG create new libraries, they will be attached to this technology library. Usually this is
the PDK library provided by the foundry.

database.schematic.sympin

Instance master of symbol pins. This is a list of library/cell/view names. Most of the time this should be
["basic", "sympin", "symbolNN"].

database.schematic.ipin

Instance master of input pins in schematic. This is a list of library/cell/view names. Most of the time this should be
["basic", "ipin", "symbol"].

database.schematic.opin

Instance master of output pins in schematic. This is a list of library/cell/view names. Most of the time this should be
["basic", "opin", "symbol"].

database.schematic.iopin

Instance master of inout pins in schematic. This is a list of library/cell/view names. Most of the time this should be
["basic", "iopin", "symbolr"].

database.schematic.simulators

A list of simulators where the termOrder CDF field should be defined.

When Virtuoso convert schematics to netlists, it uses the termOrder CDF field to decide how to order the pin names
in the netlist. This entry makes BAG update the termOrder field correctly whenever pins are changed.

Most of the time, this should be ["auLvs", "auCdl", "spectre", "hspiceD"].

database.schematic.exclude_libraries

A list of libraries to exclude when importing schematic generators to BAG. Most of the time, this should be
["analogLib", "basic", {PDK}], where {PDK} is the PDK library.

database.testbench

This entry contains all settings needed to create new testbenches.

database.testbench.config_libs

A string of config view global libries, separated by spaces. Used to generate config view.

database.testbench.config_views

A string of config view global cellviews, separated by spaces. Used to generate config view. Most of the time this
should be "spectre calibre schematic veriloga".

database.testbench.config_stops

A string of config view global stop cellviews, separated by spaces. Used to generate config view. Most of the time this
should be "spectre veriloga".

database.testbench.env_file

The simulation environment file name. A simulation environment is a combination of process corner and temperature.
For example, if you simulate your circuit at TT corner with a temperature of 50 degrees Celsius, you may say the
simulation environment is TT_50. A simulation environment file contains all simulation environments you want to define
when BAG creates a new testbench. This file can be generated by exporting corner setup from an ADE-XL view.

database.testbench.def_files

A list of ADE/spectre definition files to include. Sometimes, a process technology uses definition files
in addition to model files. If so, you can specify definition files to include here as a list of strings.
Use an empty list ([]) if no definition file is needed.

database.testbench.default_env

The default simulation environment name. See database.testbench.env_file.

database.checker

This entry contains all settings needed to run LVS/RCX from BAG.

database.checker.checker_cls

The Python class that handles LVS/RCX. If you use Calibre with Virtuoso for LVS/RCX, the value must be
bag.verification.calibre.Calibre.

database.checker.lvs_run_dir

LVS run directory.

database.checker.rcx_run_dir

RCX run directory

database.checker.lvs_runset

LVS runset.

database.checker.rcx_runset

RCX runset.

database.checker.source_added_file

Location of the source.added file for Calibre LVS. If this entry is not defined, BAG
defaults to $DK/Calibre/lvs/source.added.

database.checker.rcx_mode

Whether to use Calibre PEX or Calibre XACT3D flow to perform parasitic extraction. The
value should be either pex or xact. If this entry is not defined, BAG defaults to
pex.

database.checker.xact_rules

Location of the Calibre XACT3D rules file. This entry must be defined if using Calibre XACT3D flow.

database.calibreview

This entry contains all settings needed to generate calibre view after RCX.

database.calibreview.cell_map

The calibre view cellmap file.

database.calibreview.view_name

view name for calibre view. Usually calibre.

simulation

This entry defines all settings related to Ocean.

simulation.class

The Python class that handles simulator interaction. This entry is mainly to support non-Ocean simulators. If you
use Ocean, the value must be bag.interface.ocean.OceanInterface.

simulation.prompt

The ocean prompt string.

simulation.init_file

This file will be loaded when Ocean first started up. This allows you to configure the Ocean simulator. If you do not want to load an initialization file, set this field to an empty string ("").

simulation.view

Testbench view name. Usually adexl.

simulation.state

ADE-XL setup state name. When you run simulations from BAG, the simulation configuration will be saved to this setup
state.

simulation.update_timeout_ms

If simulation takes a lone time, BAG will print out a message at this time interval (in milliseconds) so you can know
if BAG is still running.

simulation.kwargs

pexpect keyword arguments dictionary used to start the simulation. When BAG server receive a simulation request, it
will run Ocean in a subprocess using Python pexpect module. This entry allows you to control how pexpect starts the
Ocean subprocess. Refer to pexpect documentation for more information.

job_options

A dictionary of job options for ADE-XL. This entry controls whether ADE-XL runs simulations remotely or locally, and how many jobs it launches for a simulation run. Refer to ADE-XL documentation for available options.

class

The subclass of :ref:

lib_defs

Location of the BAG design module libraries definition file.

The BAG libraries definition file is similar to the cds.lib file for Virtuoso, where it defines every design module
library and its location. This file makes it easy to share design module libraries made by different designers.

Each line in the file contains two entries, separated by spaces. The first entry is the name of the design module
library, and the second entry is the location of the design module library. Environment variables may be used in this
file.

new_lib_path

Directory to put new generated design module libraries.

When you import a new schematic generator library, BAG will create a corresponding Python design module library and
define this library in the library definition file (see lib_defs). This field tells BAG where new design
module libraries should be created.

Technology Configuration File

Technology configuration file is written in YAML format. This document describes each setting.
Technology configuration file may use environment variable to specify values of any entries.

	class

	mos
	mos.width_resolution

	mos.length_resolution

	mos.mos_char_root

	layout
	layout.em_temp

class

The subclass of bag.layout.core.TechInfo for this process technology.
If this entry is not defined, a default dummy TechInfo
instance will be created for schematic-only design flow.

mos

This entry defines all MOS transistor settings.

mos.width_resolution

The transistor width minimum resolution, in meters or number of fins in finfet technology.

mos.length_resolution

The transistor length minimum resolution, in meters.

mos.mos_char_root

The default transistor characterization data directory.

layout

This entry defines all layout specific settings.

layout.em_temp

The temperature used to calculate electro-migration specs. The temperature should
be specified in degrees Celsius.

Setting up New PDK

This section describes how to get BAG 2.0 to work with a new PDK.

	Create a new technology configuration file for this PDK. See Technology Configuration File for a description of
the technology configuration file format.

	Create a new BAG configuration file for this PDK. You can simply copy an existing configuration, then change the
fields listed in Changing Process Technology.

	Create a new BAG_prim library for this PDK. The easiest way to do this is to copy an existing BAG_prim
library, then change the underlying instances to be instances from the new PDK. You should use the pPar command
in Virtuoso to pass CDF parameters from BAG_prim instances to PDK instances.

	Change your cds.lib to refer to the new BAG_prim library.

	To avoid everyone having their own python design modules for BAG primitive, you should generated a global design module
library for BAG primitives, then ask every user to include this global library in their bag_libs.def file. To
do so, setup a BAG workspace and execute the following commands:

import bag
prj = bag.BagProject()
prj.import_design_library('BAG_prim')

now copy the generate design library to a global location.

Developer Guide

Nothing here yet…

bag

	bag package
	Subpackages
	bag.data package
	Submodules

	bag.data.core module

	bag.data.dc module

	bag.data.digital module

	bag.data.lti module

	bag.data.ltv module

	bag.data.mos module

	bag.data.plot module

	Module contents

	bag.design package
	Submodules

	bag.design.database module

	bag.design.module module

	Module contents

	bag.interface package
	Submodules

	bag.interface.database module

	bag.interface.ocean module

	bag.interface.server module

	bag.interface.simulator module

	bag.interface.skill module

	bag.interface.zmqwrapper module

	Module contents

	bag.io package
	Submodules

	bag.io.common module

	bag.io.file module

	bag.io.gui module

	bag.io.process module

	bag.io.sim_data module

	Module contents

	bag.layout package
	Subpackages

	Submodules

	bag.layout.connection module

	bag.layout.core module

	bag.layout.digital module

	bag.layout.objects module

	bag.layout.template module

	bag.layout.util module

	Module contents

	bag.math package
	Submodules

	bag.math.dfun module

	bag.math.interpolate module

	Module contents

	bag.mdao package
	Submodules

	bag.mdao.components module

	bag.mdao.core module

	Module contents

	bag.tech package
	Submodules

	bag.tech.core module

	bag.tech.mos module

	Module contents

	bag.util package
	Submodules

	bag.util.interval module

	bag.util.libimport module

	bag.util.parse module

	bag.util.search module

	Module contents

	bag.verification package
	Submodules

	bag.verification.base module

	bag.verification.calibre module

	bag.verification.pvs module

	bag.verification.virtuoso_export module

	Module contents

	Submodules

	bag.core module

	bag.virtuoso module

	Module contents

bag package

Subpackages

	bag.data package
	Submodules

	bag.data.core module

	bag.data.dc module

	bag.data.digital module

	bag.data.lti module

	bag.data.ltv module

	bag.data.mos module

	bag.data.plot module

	Module contents

	bag.design package
	Submodules

	bag.design.database module

	bag.design.module module

	Module contents

	bag.interface package
	Submodules

	bag.interface.database module

	bag.interface.ocean module

	bag.interface.server module

	bag.interface.simulator module

	bag.interface.skill module

	bag.interface.zmqwrapper module

	Module contents

	bag.io package
	Submodules

	bag.io.common module

	bag.io.file module

	bag.io.gui module

	bag.io.process module

	bag.io.sim_data module

	Module contents

	bag.layout package
	Subpackages
	bag.layout.routing package
	Submodules

	bag.layout.routing.base module

	bag.layout.routing.fill module

	bag.layout.routing.grid module

	Module contents

	Submodules

	bag.layout.connection module

	bag.layout.core module

	bag.layout.digital module

	bag.layout.objects module

	bag.layout.template module

	bag.layout.util module

	Module contents

	bag.math package
	Submodules

	bag.math.dfun module

	bag.math.interpolate module

	Module contents

	bag.mdao package
	Submodules

	bag.mdao.components module

	bag.mdao.core module

	Module contents

	bag.tech package
	Submodules

	bag.tech.core module

	bag.tech.mos module

	Module contents

	bag.util package
	Submodules

	bag.util.interval module

	bag.util.libimport module

	bag.util.parse module

	bag.util.search module

	Module contents

	bag.verification package
	Submodules

	bag.verification.base module

	bag.verification.calibre module

	bag.verification.pvs module

	bag.verification.virtuoso_export module

	Module contents

Submodules

bag.core module

bag.virtuoso module

Module contents

bag.data package

Submodules

bag.data.core module

bag.data.dc module

bag.data.digital module

bag.data.lti module

bag.data.ltv module

bag.data.mos module

bag.data.plot module

Module contents

bag.design package

Submodules

bag.design.database module

bag.design.module module

Module contents

bag.interface package

Submodules

bag.interface.database module

bag.interface.ocean module

bag.interface.server module

bag.interface.simulator module

bag.interface.skill module

bag.interface.zmqwrapper module

Module contents

bag.io package

Submodules

bag.io.common module

bag.io.file module

bag.io.gui module

bag.io.process module

bag.io.sim_data module

Module contents

bag.layout package

Subpackages

	bag.layout.routing package
	Submodules

	bag.layout.routing.base module

	bag.layout.routing.fill module

	bag.layout.routing.grid module

	Module contents

Submodules

bag.layout.connection module

bag.layout.core module

bag.layout.digital module

bag.layout.objects module

bag.layout.template module

bag.layout.util module

Module contents

bag.layout.routing package

Submodules

bag.layout.routing.base module

bag.layout.routing.fill module

bag.layout.routing.grid module

Module contents

bag.math package

Submodules

bag.math.dfun module

bag.math.interpolate module

Module contents

bag.mdao package

Submodules

bag.mdao.components module

bag.mdao.core module

Module contents

bag.tech package

Submodules

bag.tech.core module

bag.tech.mos module

Module contents

bag.util package

Submodules

bag.util.interval module

bag.util.libimport module

bag.util.parse module

bag.util.search module

Module contents

bag.verification package

Submodules

bag.verification.base module

bag.verification.calibre module

bag.verification.pvs module

bag.verification.virtuoso_export module

Module contents

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to BAG’s documentation!

 		
 Tutorial

 		
 Overview

 		
 Schematic Generator

 		
 Design Module

 		
 design()

 		
 get_layout_params()

 		
 get_layout_pin_mapping()

 		
 Testbench Generator

 		
 BAG Setup Procedure

 		
 Installing Python for BAG

 		
 Installation Requirements

 		
 Required Packages

 		
 Building Pyoptsparse

 		
 Configuration Files Summary

 		
 Starting New Project

 		
 Customizing Virtuoso Setups

 		
 Python Design Module Customization

 		
 Changing Process Technology

 		
 BAG Configuration File

 		
 socket

 		
 database

 		
 simulation

 		
 class

 		
 lib_defs

 		
 new_lib_path

 		
 Technology Configuration File

 		
 class

 		
 mos

 		
 layout

 		
 Setting up New PDK

 		
 Developer Guide

 		
 bag

 		
 bag package

 		
 Subpackages

 		
 Submodules

 		
 bag.core module

 		
 bag.virtuoso module

 		
 Module contents

_images/gm_schematic.png
cadence

gm
XD1 (nmos4_fast)
XD2 (nmos4_fast)
XD3 (nmos4_fast)
XD4 (nmos4_fast)
XN (nmos4_fast)
XP (nmos4_fast)
XT (nmos4_fast)

b
hN
hN
hN
hN
hN
N
-
-
-
-
-
-
-

Property Editor.

_images/inv_chain_schematic.png
array schematic (on bwrcr720-10.EECS.Berki - 0 x

_array
XINV (inv)
N

T

_images/bag_flow.png
BAG (Python)

Schematic Virtuoso
Generator
ADE-XL

" Testbench
Design /

Verification
Scripts

Layout
Generator

Technology Testbench
Configurations Generator

Simulation Ocean Simulator
Interface

